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4.1 Let M be a di�erentiable manifold and ∇ a connection on M.

(a) Show that there exists no (1, 2)-type tensor �eld A on M with the property that, in any
local coordinate system (x1, . . . , xn) on M

Ak
ij = Γk

ij.

Hint: Check how Γk
ij transforms under changes of coordinates.

(b) Show that the torsion T : Γ(M)× Γ(M) → Γ(M) of the connection ∇, which is de�ned
by

T (X, Y ) = ∇XY −∇YX − [X, Y ],

is a tensor �eld.

(c) Let ∇̄ be a (possibly) di�erent connection on M. Show that the di�erence ∇ − ∇̄ :
Γ(M) × Γ(M) → Γ(M) is also a tensor �eld. Deduce that, there exists a (1, 2)-type
tensor �eld A such that, in any given local coordinate system (x1, . . . , xn),

Ak
ij = Γk

ij − Γ̄k
ij

where Γk
ij and Γ̄k

ij are the Christo�el symbols of ∇ and ∇̄, respectively.

(d) Show that, if h1, h2 ∈ C∞(M), then h1∇ + h2∇̄ is again a connection if and only if
h1 + h2 = 1.

Solution. (a) Assume that there exists a tensor �eld A as in the statement. Then, if (x1, . . . , xn)
and (y1, . . . , yn) are two coordinate systems around the same point p ∈ M, the components Ak

ij and

Ãk
ij of A in the two coordinate systems, respectively, are related by the transformation formula

Ãk
ij = Aγ

αβ ·
∂yk

∂xα

∂xβ

∂yi
∂xβ

∂yj
. (1)

On the other hand, the Christo�el symbols Γk
ij and Γ̃k

ij in the coordinate systems (x1, . . . , xn) and
(y1, . . . , yn), respectively, are given by the relations

Γk
ij = dxk

(
∇ ∂

∂xi

∂

∂xj

)
and

Γ̃k
ij = dyk

(
∇ ∂

∂yi

∂

∂yj

)
=

∂yk

∂xγ
dxγ

(
∇ ∂xα

∂yi
· ∂
∂xα

(∂xβ

∂yj
· ∂

∂xβ

)
=

∂yk

∂xγ
· ∂x

α

∂yi
· dxγ

(
∇ ∂

∂xα

(∂xβ

∂yj
· ∂

∂xβ

)

Page 1



EPFL� Spring 20245

Series 4: SOLUTIONS

Di�erential Geometry III:

Riemannian geometry
G. Moschidis

14 Mar. 2024

=
∂yk

∂xγ
· ∂x

α

∂yi
· dxγ

( ∂

∂xα

(∂xβ

∂yj
)
· ∂

∂xβ
+

∂xβ

∂yj
· ∇ ∂

∂xα

( ∂

∂xβ

)
=

∂yk

∂xγ
· ∂x

α

∂yi
·
( ∂

∂xα

(∂xβ

∂yj
)
· dxγ

( ∂

∂xβ

)
+

∂xβ

∂yj
· dxγ

(
∇ ∂

∂xα

( ∂

∂xβ

))
=

∂yk

∂xγ
· ∂x

α

∂yi
· ∂

∂xα

(∂xγ

∂yj
)
+ Γγ

αβ ·
∂yk

∂xγ
· ∂x

α

∂yi
· ∂x

β

∂yj

(note that we used the fact that that dxk(·) is a tensor �eld and, thus, is C∞(M)-linear in its
argument). Therefore, we see that the transformation law for the Christo�el symbols contains an

additional term which is not there in (1), namely ∂yk

∂xγ · ∂x
α

∂yi
· ∂
∂xα . Expressing the coordinates y

i = yi(x)

as functions of (x1, . . . , xn), this term is equal to

[Dy]kγ ·
(
[Dy]−1

)α
i
·
( ∂

∂xα

(
[Dy]−1

)β
j

)
where [DY ]iα = ∂yi

∂xα is the Jacobian matrix for y. In particular, if the second derivatives of the
transformation x → y(x) at p ∈ M are not all 0, then this term will have a non-zero at p. Therefore,
Γk
ij does not transform under coordinate changes like a tensor �eld.

(b) In order to show that T is a tensor �eld, it su�ces to show that it is C∞(M)-linear in its
arguments; since T obviously satis�es T (X1+X2, Y ) = T (X1, Y )+T (X2, Y ) (because ∇ and [·, ·] are
R-linear in their arguments) and T (X, Y ) = −T (Y,X), it su�ces to show that, for any X, Y ∈ Γ(M)
and f ∈ C∞(M):

T (f X, Y ) = f T (X, Y ).

Recall that the Lie bracket [·, ·] satis�es for any

[f X, Y ] = f [X, Y ]− Y (f) ·X

since, for any h ∈ C∞(M):

[f X, Y ](h) = f X
(
Y (h)

)
−Y

(
fX(h)

)
= f X

(
Y (h)

)
−Y (f)X(h)−f Y

(
X(h)

)
= f [X, Y ](h)−Y (f)X(h).

Using the above observation and the fact that ∇ is C∞(M) in its �rst argument and satis�es the
Leibniz rule with respect to its second argument, we can calculate:

T (f X, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f∇XY − Y (f)X − f∇YX − f [X, Y ] + Y (f)X

= f ·
(
∇fXY −∇Y (fX)− [X, Y ]

)
= f T (X, Y ).

(c) As before, we have to verify that ∇−∇̄ is C∞(M)-linear in both its arguments; since, by the
de�nition of a connection, both ∇ and ∇̄ are C∞(M)-linear in their �rst argument and R-linear in
their second argument, it remains to prove that, for any X, Y ∈ Γ(M) and f ∈ C∞(M):

(∇− ∇̄)(X, f Y ) = f (∇− ∇̄)(X, Y ).
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Indeed:

(∇− ∇̄)(X, f Y ) = ∇X(f Y )− ∇̄X(f Y )

= X(f)Y + f ∇XY −X(f)Y − f ∇̄XY

= f ∇XY − f ∇̄XY

= f (∇− ∇̄)(X, Y ).

Therefore, setting A(X, Y )
.
= (∇ − ∇̄)(X, Y ) = ∇XY − ∇̄XY , we have shown that A : Γ(M) ×

Γ(M) → Γ(M) is a (1, 2)-tensor �eld; it is easy to verify that, in any local coordinate system
(x1, . . . , xn), the components Ak

ij of A take the form

Ak
ij = Γk

ij − Γ̄k
ij.

(d) Let us de�ne D : Γ(M)× Γ(M) → Γ(M) by the relation

D(X, Y )
.
= h1∇XY + h2∇̄XY.

The function D is a connection if and only if it satis�es:

1. D(f1X1+X2, Y ) = f1D(X1+f2X2, Y )+D(X2, Y ) for all X1, X2, Y ∈ Γ(M) and f1 ∈ C∞(M).

2. D(X, aY1 + Y2) = D(X, Y1) + aD(X, Y2) for all X, Y1, Y2 ∈ Γ(M) and a ∈ R.

3. D(X, f Y ) = X(f)Y + fD(X, Y ) for all X, Y ∈ Γ(M) and f ∈ C∞(M).

Among the properties above, 1 and 2 can be easily veri�ed using the fact that they are satis�ed by
both ∇ and ∇̄. For proprty 3, using the fact that ∇ and ∇̄ satisfy the Leibniz rule, we obtain:

D(X, f Y ) = h1∇X(fY ) + h2∇̄X(fY )

= h1X(f)Y + f h1∇XY + h2X(f)Y + f h2∇̄XY

= (h1 + h2)X(f)Y + f D(X, Y ).

Therefore, property 3 is satis�ed if and only if h1 + h2 = 1.

4.2 Let M be a smooth manifold equipped with a connection ∇. We can extend the connection ∇
to a map ∇ : Γ(M)× Tenk

l (M) → Tenk
l (M) (where Tenk

l (M) is the space of tensor �elds on
M of type (k, l)) by the requirements that

� ∇ satis�es the Leibniz rule with respect to tensor products, i.e. for all X ∈ Γ(M)

∇X(f ⊗ g) = ∇Xf ⊗ g + f ⊗∇Xg,

� ∇ commutes with contractions, i.e.

∇X(trA) = tr
(
∇XA).
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Show that, in any local coordinate chart (x1, . . . , xn), if Γk
ij are the Christo�el symbols of ∇

then, for every 1-form ω:
(∇ ∂

∂xi
ω)j = ∂iωj − Γk

ijωk.

Moreover, for any (k, l)-tensor �eld T :

(∇ ∂
∂xa

T )i1...ikj1...jl = ∂aT
i1...ik

j1...jl
+Γi1

abT
bi2...ik

j1...jl
+ . . .+ Γik

abT
i1...ik−1b

j1...jl

− Γb
aj1

T i1i2...ik
bj2...jl

− . . .− Γb
ajl
T

i1...ik−1ik
j1...jl−1b

.

Solution. We will start by observing that, for any 1-form ω and any vector �eld X on M, the
function ω(X) ∈ C∞(M) can be seen as the contraction tr(ω ⊗X) of the (1, 1)-tensor �eld ω ⊗X;
this can be seen clearly in local coordinates, since

(ω ⊗X)ij
.
= ωiX

j and ω(X) = ωkX
k.

Therefore, using our assumptions that ∇X(f ⊗ h) = ∇Xf ⊗ h + f ⊗ ∇Xh and ∇ commutes with
contractions, we obtain for any X, Y ∈ Γ(M):

Y
(
ω(X)

)
= Y

(
tr(ω ⊗X)

)
= tr

(
∇Y (ω ⊗X)

)
= tr

(
∇Y ω ⊗X + ω ⊗∇YX

)
= ∇Y ω(X) + ω

(
∇YX

)
.

By rearranging the terms in the above identity, we thus obtain:

∇Y ω(X) = Y
(
ω(X)

)
− ω

(
∇YX

)
.

In any given local coordinate system (x1, . . . , xn) on M, if we apply the above formula for X = ∂
∂xj

and Y = ∂
∂xi we obtain: (

∇ ∂

∂xi
ω
)
j
= ∂i(ωj)−

(
∇∂i∂j

)k
ωk

= ∂i(ωj)− Γk
ijωk.

In particular, if ω = dxk is a coordinate 1-form, then

∇∂i(dx
k) = −Γk

ijdx
j.

If T is a tensor �eld of type (k, l), then it can be expressed in a local coordinate system (x1, . . . , xn)
as before as a linear combination of the coordinate (k, l)-tensor �elds ∂

∂xγ1
⊗· · ·⊗ ∂

∂xik
⊗dxδ1⊗· · ·⊗dxδl ,

γ1, . . . , γk, δ1, . . . , δl ∈ {1, . . . , n}:

T = T γ1...γk
δ1...δl

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xγk
⊗ dxδ1 ⊗ · · · ⊗ dxδl . (2)
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Our assumption on the behaviour of ∇ on tensor products and the fact that ∇ satis�es the Leibniz
rule implies that, for any f ∈ C∞(M), any X ∈ Γ(M) and any (Y(1), . . . , Y(1), ω(1), . . . , ω(l)) ∈
Γ(M)× · · · × Γ(M)× Γ∗(M)× · · · × Γ∗(M), we have

∇X

(
f Y(1) ⊗ · · · ⊗ Y(k) ⊗ ω(1) ⊗ · · · ⊗ ω(l)

)
= X(f)Y(1) ⊗ · · · ⊗ Y(k) ⊗ ω(1) ⊗ · · · ⊗ ω(l)

+ f (∇XY(1))⊗ · · · ⊗ Y(k) ⊗ ω(1) ⊗ · · · ⊗ ω(l)

+ . . .+ f Y(1) ⊗ · · · ⊗ (∇XY(k))⊗ ω(1) ⊗ · · · ⊗ ω(l)

+ f Y(1) ⊗ · · · ⊗ Y(k) ⊗∇X(ω(1))⊗ · · · ⊗ ω(l)

+ . . .+ f Y(1) ⊗ · · · ⊗ Y(k) ⊗ ω(1) ⊗ · · · ⊗ (∇Xω(l)).

Therefore, applying this formula for the ∇ ∂
∂xα

derivative of the expression (2) and using the fact that

∇∂α

∂

∂xi
= Γj

αi

∂

∂xj
, ∇∂α(dx

i) = −Γi
αjdx

j

(the last formula following from our computation of the expression of ∇ acting on 1-forms), we
obtain:

∇∂αT = (∂αT
γ1...γk

δ1...δl
)

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xγk
⊗ dxδ1 ⊗ · · · ⊗ dxδl

+ T γ1...γk
δ1...δl

Γβ
αγ1

∂

∂xβ
⊗ · · · ⊗ ∂

∂xγk
⊗ dxδ1 ⊗ · · · ⊗ dxδl

+ . . .+ T γ1...γk
δ1...δl

Γβ
αγk

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xβ
⊗ dxδ1 ⊗ · · · ⊗ dxδl

− T γ1...γk
δ1...δl

Γδ1
αβ

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xγk
⊗ dxβ ⊗ · · · ⊗ dxδl

− . . .− T γ1...γk
δ1...δl

Γδl
αβ

∂

∂xγ1
⊗ · · · ⊗ ∂

∂xγk
⊗ dxδ1 ⊗ · · · ⊗ dxβ.

Therefore, considering the ∂
∂xi1

⊗ · · · ⊗ ∂
∂xik

⊗ dxj1 ⊗ · · · ⊗ dxjl component of the above expression
(noticing that, in each summand involving Γ, an index of Γ is contracted with one index of T , and
we are free to rename those indices as we please), we obtain

(∇ ∂
∂xa

T )i1...ikj1...jl = ∂aT
i1...ik

j1...jl
+Γi1

abT
bi2...ik

j1...jl
+ . . .+ Γik

abT
i1...ik−1b

j1...jl

− Γb
aj1

T bi2...ik
bj2...jl

− . . .− Γb
ajl
T

i1...ik−1b
j1...jl−1b

.

4.3 Let Mn be a di�erentiable manifold.

(a) Show that, for any X, Y, Z ∈ Γ(M):

L[X,Y ]Z = LXLYZ − LYLXZ.

Show that the above relation also holds when Z is replaced by any tensor �eld f of type
(k, l), k, l ∈ N. (Hint: Check how LX behaves on tensor products of the form f1 ⊗ f2.)
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(b) Let g be a Riemannian metric on M. We will say that a vector �eld X ∈ Γ(M) is a
Killing �eld if it generates a �ow of isometries for g, i.e. if, for any p ∈ M, the �ow map
Φ : (−δ, δ)× U → M associated to X in a neighborhood U of p satis�es

(Φt)
∗(g ◦ Φt) = g for all t ∈ (−δ, δ).

Show that
LXg = 0.

Show also that, in any local system of coordinates, the above equation takes the form

gik∂jX
k + gjk∂iX

k + ∂kgijX
k = 0

(Hint: Apply the product rule on the expression X(g(Y, Z)) = LX(g(Y, Z)) for suitably
chosen vector �elds Y, Z.)

(c) Show that the space K of Killing �elds on (M, g) is closed under commutation, i.e. that
[X, Y ] ∈ K if X, Y ∈ K; thus, K forms a Lie subalgebra of Γ(M).

*(d) We will later prove in class that if there exists a point p ∈ M and a local system of
coordinates around p such that X|p = 0 and ∂iX

j|p = 0 for all i, j = 1, . . . , n, then X
vanishes everywhere on the connected component of M containing p. Using this fact, can
you show that on a connected Riemannian manifold (M, g) the dimension of K is at most
n(n+1)

2
? Can you �nd a basis for the Killing algebra K on (Rn, gE)?

Solution. (a) Using the formula LXY = [X, Y ] holding for any X, Y ∈ Γ(M), we can readily
calculate that the relation

L[X,Y ]Z = LXLYZ − LYLXZ

is equivalent to the statement that[
[X, Y ], Z

]
=

[
X, [Y, Z]

]
−

[
Y, [X,Z]

]
which, after rearranging the terms and using the anti-symmetry of [·, ·] in its arguments, is equivalent
to [

[X, Y ], Z
]
+
[
[X, Y ], Z

]
+
[
[X, Y ], Z

]
= 0.

The above is just Jacobi's identity (see Exercise 3.3).
Using the fact that the Lie derivative commutes with contractions and satis�es the product rule

with respect to tensor products, we compute that, for any 1-form ω and any X, Y ∈ Γ(M) (recalling
also that ω(Y ) = tr(ω ⊗ Y ):

X
(
ω(Y )

)
= LX

(
tr(ω ⊗ Y )

)
= LXω(Y ) + ω

(
LXY

)
,

so that:
(LXω)(Y ) = X

(
ω(Y )

)
− ω

(
[X, Y ]

)
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(from now on, we will drop the parentheses and write LXω(Y ) meaning (LXω)(Y )). Therefore, we
can readily calculate for any X, Y, Z ∈ Γ(M)

LX(LY ω)(Z) = X
(
LY ω(Z)

)
− LY ω([X,Z])

= X
(
Y (ω(Z))− ω([Y, Z])

)
− Y

(
ω([X,Z])

)
+ ω

([
Y, [X,Z]

])
= X

(
Y (ω(Z))

)
−X

(
ω([Y, Z])

)
− Y

(
ω([X,Z])

)
+ ω

([
Y, [X,Z]

])
and, after switching the roles of X, Y :

LY (LXω)(Z) = Y
(
X(ω(Z))

)
− Y

(
ω([X,Z])

)
−X

(
ω([Y, Z])

)
+ ω

([
X, [Y, Z]

])
.

Subtracting the above relations (noting that the second and third term in each right hand side cancel
out), we obtain

LX(LY ω)(Z)− LY (LXω)(Z) = [X, Y ]
(
ω(Z)

)
+ ω

([
Y, [X,Z]

]
−
[
X, [Y, Z]

])
= [X, Y ]

(
ω(Z)

)
− ω

([
[X, Y ], Z

])
=

(
L[X,Y ]ω

)
(Z)

(where, in passing from the second to the third line above, we used Jacobi's identity). Since the
above relation is true for any Z ∈ Γ(M), we infer that

L[X,Y ]ω = LXLY ω − LYLXω.

In order to prove that the same relation holds for any tensor �eld T , i.e.

L[X,Y ]T = LXLY T − LYLXT, (3)

we can argue inductively on the type of T : If the formula is true for all tensor �elds of type (k, l),
then (due to linearity) (3) will also be true for all tensor �elds of type (k+1, l) if it's true for tensors
of the form

T = T̄ ⊗ V,

where T̄ is of type (k, l) and V ∈ Γ(M) (we get the same statement for tensor �elds of type (k, l+1)
if we replace V with ω ∈ Γ∗(M)). Using the formula

LXT = LX T̄ ⊗ V + T̄ ⊗ LXV,

verifying (3) using that it is true for T̄ and V is a simple algebraic exercise. Similarly when V is
replaced with ω ∈ Γ∗(M), to deduce that (3) is true for tensor �elds of type (k, l + 1) if it's true for
tensor �elds of type (k, l).

(b) As in the case of the proof of the formula LXY = [X, Y ] that we saw in class, one way to
prove that LXg = 0 is by arguing in a local coordinate system where X is of the form ∂

∂x1 (this
is only possible around points p ∈ M where X|p ̸= 0; as we saw in class, this is enough to verify
the formula in the closure of the support of X, while outside the support of X the operator LX is
identically 0 when acting on vector �elds and one forms and, hence, on any tensor �eld by induction).
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In such a coordinate system, the �ow map Φt associated to X is simply the coordinate translation
map (x1, x2, . . . , xn) → (x1 + t, x2, . . . , xn); therefore, the matrix of the di�erential DΦt takes the
simple form

[DΦt]
i
j =

∂Φi
t

∂xj
=


1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1

 .

The fact that (Φt)
∗(g ◦ Φt) = g is equivalent to the statement that, for any Y, Z ∈ Γ(M) and any

p ∈ M:
g|Φt(p)

(
dΦt(Y ), dΦt(Z)

)
= g|p(Y, Z).

Applying the above relation for Y, Z being coordinate vector �elds in the above coordinate chart, we
infer that the components of g satisfy for any t small enough:

gij(x
1 + t, x2, . . . , xn) = gij(x

1, x2, . . . , xn)

and, therefore:
∂gij
∂x1

= 0. (4)

The Lie derivative LXT of any tensor �eld T de�ned on the coordinate chart where X = ∂
∂x1

takes the simple form: (
LXT

)i1...ik
j1...jl

=
(
L∂1T

)i1...ik
j1...jl

=
∂

∂x1
(T i1...ik

j1...jl
). (5)

We have already seen that this formula is true when T is a vector �eld; using the formula LXω(Y ) =
X
(
ω(Y )

)
− ω([X, Y ]) for Y = ∂

∂xk , it can be also veri�ed in the case when T is an 1-form. The
case when T is a general (k, l)-tensor can be established inductively using the product rule for LX .
Alternatively, one can deduce (5) by noting that, in any coordinate system (x1, . . . , xn), L∂i

∂
∂xj = 0

and L∂idx
j = 0, and, therefore,

L∂i

( ∂

∂xi1
⊗ · · · ⊗ ∂

∂xik
⊗ dxj1 ⊗ · · · ⊗ dxjl

)
= 0.

The condition (4) now implies the required relation when T = g:

(LXg)ij = 0.

In view of the fact that LX commutes with contractions and satis�es the product rule LX(f⊗h) =
LXf ⊗ h+ f ⊗ LXh, we can calculate for any X, Y, Z ∈ Γ(M):

X
(
g(Y, Z)

)
= (LXg)(Y, Z) + g(LXY, Z) + g(Y,LXZ)

= g(LXY, Z) + g(Y,LXZ).
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In any local coordinate system (x1, . . . , xn), choosing Y = ∂i and Z = ∂j, the above formula yields
(noting that [X, Y ]k = −∂iX

k and [X,Z]k = −∂jX
k in this case):

Xk∂kgij = gkl · [X, ∂i]
k · (∂j)l + gkl · (∂i)l · [X, ∂j]

i

= −gik∂jX
k − gjk∂iX

k.

Remark. Note that our argument in a local coordinate system where X = ∂
∂x1 in fact yields the

following coordinate-independent relation for any covariant tensor (i.e. of type (0, k)):

LXT |p = lim
t→0

(Φt)
∗T |Φt(p) − T |p

t
(6)

where (Φt)
∗ is the pull-back map associated to Φt, i.e. (Φt)

∗T (X1, . . . , xk)
.
= T

(
DΦt(X1), . . . DΦt(Xk)

)
.

Returning, now, to the case when X is a Killing �eld of g and choosing T = g in the above formula,
we have

(Φt)∗g|Φt(p) = g|p for all p ∈ M.

Therefore, formula (6) directly implies that LXg = 0.

(c) If X, Y ∈ K, then LXg = LY g = 0. Using the commutator formula from part (a) of this
exercise, we calculate

L[X,Y ]g = LX

(
LY g

)
− LY

(
LXg

)
= 0− 0 = 0.

Therefore, is will follow that [X, Y ] is also a Killing vector �eld once we show that, for any vector
�eld Z, the condition

LZg = 0

implies that Z generates a �ow Φt of isometries. It su�ces to prove this fact at points p ∈ supp(Z) ={
q ∈ M : Z|q ̸= 0

}
(since, by continuity, the statement will be then true also on clos

(
supp(Z)

)
).

The statement is trivially true on the set M \ clos
(
supp(Z)

)
which consists of points q for which

Z = 0 on a whole open neighborhood of q; at such points, Φt = Φ0 = Id, and hence Φt is (trivially)
an isometry.

For any p ∈ supp(Z), let us choose a local coordinate system (x1, . . . , xn) such that Z = ∂
∂x1 . In

this coordinate system, Φt(x
1, x2, . . . , xn) = (x1 + t, x2, . . . , xn). Therefore,(

(Φt)
∗g|Φt(p)

)
ij
= gij(x

1(p) + t, x2(p), . . . , xn(p)).

Moreover, LZg = 0 translates to
∂1gij = 0.

Integrating the above equation in the x1 direction, we obtain

gij(x
1(p) + t, x2(p), . . . , xn(p)) = gij(x

1(p), x2(p), . . . , xn(p)),

i.e. that
(
(Φt)

∗g|Φt(p)

)
ij
= (g|p)ij, as required.
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(d) Let (M, g) be a connected Riemannian manifold. Using the statement that, if Xk|p =
∂iX

j|p = 0 for all i, j, k = 1, . . . , n in some local coordinate chart around p and X ∈ K then X = 0,
we deduce (by linearity) that, if Z1, Z2 ∈ K satisfy Zk

1 |p = Zk
2 |p and ∂iZ

k
1 |p = ∂iZ

k
2 then Z1 = Z2 on

M. This implies that the number of linearly independent Killing vector �elds Z on (M, g) can be
at most as many as the components of Zk|p and ∂iZ

j|p. However, the components of ∂iZ
j|p are not

independent from each other: Using the formula establised in part (b), i.e. that

gik∂jX
k + gjk∂iX

k +Xk∂kgij = 0,

we infer that the matrix Mij = gik∂jX
k|p is completely determined once we know Xk|p and the

elements Mij of M corresponding to i > j (there are precisely n(n−1)
2

such elements Mij). Since the
matrix [g] of g is invertible, this implies that, given Xk|p, the matrix ∂iX

j|p is restricted to lie in

a subspace of dimension n(n−1)
2

. Therefore, since Xk|p has n elements, the dimension of the Killing

algebra K cannot exceed n+ n(n−1)
2

= n(n+1)
2

.
In the case of Euclidean space (Rn, gE), the vector �elds corresponding to translations in the

direction of the axes and rotations in the coordinate 2-planes, that is to say the vector �elds

Ti =
∂

∂xi
, i = 1, . . . , nΩij = xi ∂

∂xj
− xj ∂

∂xi
, i > j ∈ {1, . . . , n}

constitute a set of n(n+1)
2

linearly independent Killing vector �elds. Since Rn is connected, this is the
maximum possible dimension of the Killing algebra K0 of (R

n, gE); as a result, {Ti,Ωij} constitute a
basis for K0.

4.4 Let X, Y be two smooth vector �elds on a 2-dimensional manifold M such that

[X, Y ] = 0

and let p ∈ M such that X|p, Y |p are not collinear. In this exercise, we will show that there
exists a local system of coordinates (y1, y2) around p so that X = ∂

∂y1
, Y = ∂

∂y2
.

(a) Show that if U is a neighborhood of p and Φ : (−δ, δ)×U → M is the �ow map associated
to X, then, for any t ∈ (−δ, δ) and q ∈ U :

dΦ−t

(
Y |Φt(q)

)
= Y |q.

(a) Let γ : I → M be an integral curve of the vector �eld Y such that γ(0) = p. Consider
the map Ψ : Ω ⊂ R

2 → M de�ned in a neighborhood Ω of 0 de�ned by the relation

Ψ(t, s) = Φt(γ(s)).

Show that Ψ is a di�eomorphism on its image when restricted to a small neighborhood of
0. Show also that in the coordinate system associated to the chart Ψ−1:

X =
∂

∂x1
, Y =

∂

∂x2
.
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Solution. (a) For any q ∈ U as in the statement of the exercise, let us de�ne for t ∈ (−δ, δ) the
tangent vector vt ∈ TqM by

vt
.
= dΦ−t

(
Y |Φt(q)

)
.

We need to show that vt = Y |q for all t ∈ (−δ, δ). Since v0 = Y |q, it su�ces to show that, for all
t ∈ (−δ, δ):

dvt
dt

= 0.

We can readily calculate:

dvt
dt

= lim
s→0

vt+s − vt
s

= lim
s→0

dΦ−t−s

(
Y |Φt+s(q)

)
− dΦ−t

(
Y |Φt(q)

)
s

= lim
s→0

dΦ−t

(
dΦ−sY |Φs(Φt(q))

)
− dΦ−t

(
Y |Φt(q)

)
s

= dΦ−t

(
lim
s→0

(
dΦ−sY |Φs(Φt(q)) − Y |Φt(q)

s

)
= dΦ−tLXY |Φt(q),

where we used the fact that Φt1+t2 = Φt2 ◦ Φt1 for any t1, t2 ∈ (−δ, δ) with t1 + t2 ∈ (−δ, δ) and,
therefore, using the formula for the derivative of the composition of two maps: dΦt1+t2|p = dΦt2 |Φt1 (p)

·
dΦt1|p. Since we assumed that [X, Y ] = 0 on M, we deduce that

dvt
dt

= 0.

Therefore, vt = Y |q for all t ∈ (−δ, δ).

(b) Let Ψ : Ω ⊂ R→ M be as de�ned in the statement of the exercise, i.e..

Ψ(t, s) = Φt(γ(s))

where Φt is the �ow map of the vector �eld X and γ(s) satis�es γ(0) = p, γ̇(s) = Y |γ(s). Note that
Ψ(0, 0) = p. In view of the properties of the �ow map of a vector �eld X, we have

∂tΨ(t, s) = ∂tΦt(γ(s)) = X|Φt(γ(s)) = X|Ψ(t,s). (7)

Moreover, since Φ0 = Id, we have Ψ(0, s) = γ(s) and

∂sΨ(0, s) = ∂sΦ0(γ(s)) = γ̇(s) = Y |Ψ(0,s). (8)

In order to show that Ψ is a di�eomorphism on its image when restricted to a small neighborhood
of the origin, it su�ces to show (in view of the inverse function theorem) that the di�erential map at
the origin DΨ|0 is invertible. Given any local coordinate system (y1, y2) around p, we can calculate
the matrix [DΨ|0] as follows

[DΨ|0] =
[
∂tΨ

1(0, 0) ∂sΨ
1(0, 0)

∂tΨ
2(0, 0) ∂sΨ

2(0, 0)

]
=

[
X1|p Y 1|p
X2|p Y 2|p

]
,
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where we used (7) and (8). Since X|p and Y |p were assumed to not be collinear, we deduce that
[DΨ|0] has full rank and is therefore invertible. Thus, there exists an open neighborhood V ⊂ Ω of
(0, 0) such that Ψ : V → Ψ(V) is a di�eomorphism.

In the coordinate chart Ψ−1 on Ψ(V), the coordinates (x1, x2) are de�ned as the pull-backs via
the map Ψ−1 of the Cartesian coordinates on V . This means that if the point q ∈ Ψ(V) satis�es
q = Ψ(t, s) = Φt(γ(s)), then (x1(q), x2(q)) = (t, s). The coordinate vector �eld ∂

∂x1 at the point

q ∈ Ψ(V) is simply the tangent vector ζ̇|q of the coordinate curve ζ(1) = {x2 = x2(q)} parametrized
by x1. Since this curve is simply

ζ(1)(x1) = Φx1(γ(x2(q))),

we infer that
∂

∂x1

∣∣∣
q
= ζ̇(1)(x1(q)) = ∂tΦt=x1(q)(γ(x

2(q))) = X|q.

Similarly, ∂
∂x2 |q is the tangent vector to the coordinate curve ζ(2) = {x1 = x1(q)} parametrized by

x2, i.e.
ζ(2)(x2) = Φx1(q)(γ(x

2)).

Thus,

∂

∂x2

∣∣∣
q
= ζ̇(2)(x2(q)) = ∂sΦt=x1(q)(γ(s = x2(q))) = dΦt=x1(q)(γ̇(s = x2(q)) = dΦt=x1(q)(Y |γ(x2(q))).

Since we proved in part (a) that

dΦt(Y |Φ−t(z)) = Y |z for all z ∈ U ,

setting t = x1(q) and z = Φx1(q)(γ(x
2(q))) = Ψ(x1(q), x2(q)) = q, we infer that

∂

∂x2

∣∣∣
q
= Y |q.

Remark. A faster way to compute the coordinate vector �elds is to simply note that, for any local
parametrization Ψ : V ⊂ R

n → N n of a manifold N , the coordinate vector �elds in the coordinate
chart associated to Ψ−1 are simply dΨ( ∂

∂xi ), where
∂
∂xi are the coordinate vector �elds in R

n.
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