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4.1 Let M be a differentiable manifold and V a connection on M.

(a) Show that there exists no (1,2)-type tensor field A on M with the property that, in any
local coordinate system (x!,... 2") on M

k _ 1k

Hint: Check how F,’fj transforms under changes of coordinates.

(b) Show that the torsion 7": T'(M) x I'(M) — I'(M) of the connection V, which is defined
by
T(X> Y) = VXY - vY)( - [X> Y]a
is a tensor field.

(¢c) Let V be a (possibly) different connection on M. Show that the difference V — V :
(M) x T'(M) — T'(M) is also a tensor field. Deduce that, there exists a (1,2)-type
tensor field A such that, in any given local coordinate system (x!,... z"),

k k Pk
Ay =T = T
where Ffj and ffj are the Christoffel symbols of V and V, respectively.
(d) Show that, if hy,hy € C°(M), then hV + hyV is again a connection if and only if

hi+ hy = 1.
Solution. (a) Assume that there exists a tensor field A as in the statement. Then, if (z!,..., z")
and (y',...,y") are two coordinate systems around the same point p € M, the components Afj and

flfj of A in the two coordinate systems, respectively, are related by the transformation formula

« oy 0xP 0xP
Ak = gy GG OT 1
) af axa 8yz ayj ( )

On the other hand, the Christoffel symbols Ffj and ffj in the coordinate systems (x!,... z") and
(y',...,y"), respectively, are given by the relations

Ffj = dxk(v o i)

827 017
and
= (o 5)
- g—iidﬂ (V%z?.a% (g_zf ’ %)
U (v (2 2

Page 1



Differential Geometry III:

EPFL- Spring 20245 G. Moschidis

Series 4: SOLUTIONS Riemannian geometry 14 Mar. 2024

oYk Oz 0 ,0z° 0 o0z 0

St A ). . -
ox7 Oyt * (0:1:0‘ (Gyf ) 0xP + oyJ V%“ <0x5 >

B oyF  Ox~ o 1028 v 0 0z’ N 0

e oyt . <8xa <8yj) de (W) * 8_3/3 e (va;fa (W))

oy ' ox® . 0 <8x7) LT oy* . ox® . oxP

02y Oyt Oz \Oyd P9z Oyt Oy

(note that we used the fact that that dz®(-) is a tensor field and, thus, is C°(M)-linear in its
argument). Therefore, we see that the transformation law for the Christoffel symbols contains an

additional term which is not there in (1), namely g%i : %i; - 52, Expressing the coordinates y* = y'(z)
as functions of (z!,..., 2"), this term is equal to
Dyt (05 )° - (5 (09’
K NG J
where [DY]!, = gmi; is the Jacobian matrix for y. In particular, if the second derivatives of the

transformation = — y(x) at p € M are not all 0, then this term will have a non-zero at p. Therefore,
Ffj does not transform under coordinate changes like a tensor field.

(b) In order to show that T is a tensor field, it suffices to show that it is C°°(M)-linear in its
arguments; since T obviously satisfies T'(X; + X»,Y) = T(X1,Y)+T(X2,Y) (because V and [-, ] are
R-linear in their arguments) and 7'(X,Y") = —=T(Y, X), it suffices to show that, for any X,Y € I'(M)
and f € C®(M):

T(fX,)Y)=fT(X,Y).

Recall that the Lie bracket [-, -] satisfies for any
X Y] =X Y] =Y(f)- X
since, for any h € C*°(M):
[f X Y](h) = fX (Y (h) =Y (fX(h)) = fX(Y(R) =Y (F)X(R)—fY(X(h)) = f[X,Y](h)=Y (f) X (h).

Using the above observation and the fact that V is C°°(M) in its first argument and satisfies the
Leibniz rule with respect to its second argument, we can calculate:

T(fXY)=VixY = Vy(fX) = [fX, Y]
= [VxY =Y (/)X = fVy X — fIX, Y]+ Y(f)X
=1 (VsxY = Vy(fX) ~ [X.Y])
— fT(X,Y).
(¢) As before, we have to verify that V — V is C°°(M)-linear in both its arguments; since, by the

definition of a connection, both V and V are C°°(M)-linear in their first argument and R-linear in
their second argument, it remains to prove that, for any X,Y € I'((M) and f € C*(M):

(V=V)X, fY)=f(V-V)X)Y).
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Indeed:

(V-V)(X,[Y)=Vx([Y)=Vx(/Y)
=X(f)Y + fVxY = X(f)Y — fVxY
= fVxY — fVyxY
=f(V-V)(X,Y).

Therefore, setting A(X,Y) = (V — V)(X,Y) = VxY — VxY, we have shown that A : T(M) x
'M) — T'(M) is a (1,2)-tensor field; it is easy to verify that, in any local coordinate system
(z',...,2"), the components A}, of A take the form

Al =T T,
(d) Let us define D : T' (M) x I'(M) — I'(M) by the relation
D(X,Y)=mnVxY + hyVyY.
The function D is a connection if and only if it satisfies:
1. D(fiXi+Xo,Y) = fiD(X1+ o X5, Y )+ D(Xo,Y) for all X7, X5, Y € I'(M) and f; € C®(M).
2. D(X,aY1 +Y2) =D(X, Y1) +aD(X,Ys) for all X,Y7,Y; € (M) and a € R.
3. DX, fY)=X(f)Y + fD(X,Y) for all X, Y € ['(M) and f € C®(M).

Among the properties above, 1 and 2 can be easily verified using the fact that they are satisfied by
both V and V. For proprty 3, using the fact that V and V satisfy the Leibniz rule, we obtain:

D(X,fY)=mVx(fY)+hVx(fY)
= X(f)Y + fVxY + hX(f)Y + fhoVxY
=(h1+h)X(f)Y + fD(X,Y).

Therefore, property 3 is satisfied if and only if hy + hy = 1.

4.2 Let M be a smooth manifold equipped with a connection V. We can extend the connection V
to a map V : I'(M) x Tenf(M) — Tenf(M) (where Tenf(M) is the space of tensor fields on
M of type (k,l)) by the requirements that

— V satisfies the Leibniz rule with respect to tensor products, i.e. for all X € T'(M)
Vx(f®g)=Vxf®g+f®Vxy,
— V commutes with contractions, i.e.

Vx(trd) = tr(VxA).
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Show that, in any local coordinate chart (x!,... z"), if Ffj are the Christoffel symbols of V
then, for every 1-form w:
(Vi_(ﬂ)j = OiW; — Fk
ozt

Moreover, for any (k,[)-tensor field T

110k o 01...0k i1 rpbig...ig i i1 dp—1b
(V%T> Jlegi 0.T j1...jl+rabT J1edi +...+ FabT G1edi
Y 1112...1% . b 01010k
Fllle bja...J1 T Fale Jie-ji—1b°

Solution. We will start by observing that, for any 1-form w and any vector field X on M, the
function w(X) € C*°(M) can be seen as the contraction tr(w ® X) of the (1,1)-tensor field w ® X;
this can be seen clearly in local coordinates, since

(W®X)! =wX’ and w(X)=wX"

Therefore, using our assumptions that Vx(f ® h) = Vxf ® h+ f ® Vxh and V commutes with
contractions, we obtain for any X,Y € T'(M):

Y (w(X)) =Y (tr(w ® X))
= tr(Vy(w ® X))
=tr(Vyw® X +w® VyX)
= Vyw(X) + w(VyX).

By rearranging the terms in the above identity, we thus obtain:

Vyw(X) =Y (w(X)) —w(VyX).

In any given local coordinate system (z',...,z") on M, if we apply the above formula for X = %
and Y = % we obtain:

In particular, if w = dz¥ is a coordinate 1-form, then

Vo, (dz*) = —Ffj da? .

If T is a tensor field of type (k, 1), then it can be expressed in a local coordinate system (z?, ..., z")

as before as a linear combination of the coordinate (k, [)-tensor fields %@- S ® (%gk Rdr" ®- - -@dz™,
717---7716761’“-75[ S {1,...7?7,}1

— Y1---Vk - I
T=T"" 55 ® ®5

®d”" @ - @ da. (2)
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Our assumption on the behaviour of V on tensor products and the fact that V satisfies the Leibniz
rule implies that, for any f € C*(M), any X € I'(M) and any (Yi),...,Yq),way, .- we)) €
M) x - x (M) x T*(M) x --- x I'"(M), we have

Vx(fYy® - @Yn @uwy® - @uwy) = X(/)Y1) @ @ Y @uwu) @ ®wy)
+f(VxY1) ® - @Y Quuy ® - - - ®w)
—l—...—{—f}/(l)®---®(VXY(1€))®W(1)®"'®OJ(Z)
+ Y1) ® @Yy @ Vx(wa)) ® - Qw
.+ Yy ® @Y Quwa ® - @ (Vxwg).

Therefore, applying this formula for the V_»_ derivative of the expression (2) and using the fact that

oz

0 .0
A F] A
Vougui = Leigg

Vo, (dz') = =T da’

(the last formula following from our computation of the expression of V acting on 1-forms), we
obtain:

Vo.T = (0.1, ) % Q- ®s @ da™ @ -+ ® daz”
+ T Ffm% ER A2’ @ -+ ® da”
T T Ffm% Q- ® % ®da" @ - @ da’
o ilgaf% Q- ® % ®de’ ® - @ dz”
— =TT Zﬁ% R ® e QA" ® - ® d2P.

Therefore, considering the 831 ®- - ® axa% ® dr’t @ --- @ do’' component of the above expression

(noticing that, in each summand involving T', an index of T is contracted with one index of T', and
we are free to rename those indices as we please), we obtain

(VLTyle — aaTil...ik. +lebsz2Zk
oz

Ji---Ji

i 1. ik—10
+ . DT

J1e--Ji

_ Fb TbZQ’Lk o - Fb Tilmikflb

aji bj2...J1 : aji Ji-gi—1b’

J1---Ji Ji---Ji

4.3 Let M™ be a differentiable manifold.
(a) Show that, for any X,Y,Z € T'(M):
;C[ny}Z - EXEYZ - KYEXZ.

Show that the above relation also holds when Z is replaced by any tensor field f of type
(k,0), k,l € N. (Hint: Check how Lx behaves on tensor products of the form fi @ fs.)

Page 5



EPFL- Spring 20245 Differential Geometry HT: G. Moschidis
Series 4: SOLUTIONS Rlemannlan geometry 14 Mar. 2024

(b) Let g be a Riemannian metric on M. We will say that a vector field X € T'(M) is a
Killing field if it generates a flow of isometries for g, i.e. if, for any p € M, the flow map
O (—0,0) x U — M associated to X in a neighborhood U of p satisfies

(D) (go®;) =g forallte (=4,0).
Show that
ﬁXg =0.

Show also that, in any local system of coordinates, the above equation takes the form
gikank + gjk&Xk + 8kgink =0

(Hint: Apply the product rule on the expression X (g(Y,Z)) = Lx(g(Y,Z)) for suitably
chosen vector fields Y, Z.)

(¢) Show that the space K of Killing fields on (M, g) is closed under commutation, i.e. that
[X,Y] e Kif X,Y € K; thus, K forms a Lie subalgebra of I'(M).

*(d) We will later prove in class that if there exists a point p € M and a local system of
coordinates around p such that X|, = 0 and 9;X’|, = 0 for all 4,5 = 1,...,n, then X
vanishes everywhere on the connected component of M containing p. Using this fact, can
you show that on a connected Riemannian manifold (M, g) the dimension of K is at most

%? Can you find a basis for the Killing algebra K on (R", gg)?

Solution. (a) Using the formula LxY = [X,Y] holding for any X,Y € I'(M), we can readily
calculate that the relation
Lixy)Z =LxLyZ — LyLxZ

is equivalent to the statement that

which, after rearranging the terms and using the anti-symmetry of |-, -] in its arguments, is equivalent

to
[X. Y], Z] + [[X,Y],Z] + [[X,Y]. Z] = 0.

The above is just Jacobi’s identity (see Exercise 3.3).

Using the fact that the Lie derivative commutes with contractions and satisfies the product rule
with respect to tensor products, we compute that, for any 1-form w and any X,Y € T'(M) (recalling
also that w(Y) =tr(w®Y):

X(w(Y)) =Lx(trlw®Y)) = Lyw(Y) +w(LxY),

so that:
(Lxw)(Y) =X (w(Y)) - w([X,Y])
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(from now on, we will drop the parentheses and write Lxw(Y") meaning (Lxw)(Y")). Therefore, we
can readily calculate for any X,Y, 7 € I'(M)
Lx(Lyw)(Z) =X (Lyw(Z)) — Lyw([X, Z])
= X(Y(@(2)) ~ (¥ Z)) ~ ¥ (@([X, Z])) + ([, [X, 2]
= X(Y(@(2)) ~ X ((Y. 2))) ~ Y (X, Z])) + ([, [X, 2]])

and, after switching the roles of X, Y
Ly (Lxw)(Z) =Y (X (w(2))) = Y (w([X, Z])) = X (w([Y. 2])) + w([X,[Y; Z]]).

Subtracting the above relations (noting that the second and third term in each right hand side cancel
out), we obtain

Lx(Lyw)(Z) — Ly(Lxw)(Z) = [X,Y](w(2)) +w([Y,[X, Z]] - [X,[Y. Z]])
= [X,Y](w(2)) —w([[X,Y], Z])
= (Lixyw)(Z)

(where, in passing from the second to the third line above, we used Jacobi’s identity). Since the
above relation is true for any Z € I'(M), we infer that

,C[XQ/]W = ﬁxﬁyw — Eyﬁxw.
In order to prove that the same relation holds for any tensor field T, i.e.
,C[X7y}T = ;CX;CyT — ﬁyﬁxT, (3)

we can argue inductively on the type of 7" If the formula is true for all tensor fields of type (k,1),
then (due to linearity) (3) will also be true for all tensor fields of type (k+1,1) if it’s true for tensors
of the form

T=Tx®V,

where T is of type (k,1) and V € T'(M) (we get the same statement for tensor fields of type (k,[+1)
if we replace V' with w € I'*(M)). Using the formula

LxT=LxTQV+T®LV,

verifying (3) using that it is true for T and V is a simple algebraic exercise. Similarly when V is
replaced with w € I'(M), to deduce that (3) is true for tensor fields of type (k,l+ 1) if it’s true for
tensor fields of type (k,1).

(b) As in the case of the proof of the formula LxY = [X,Y] that we saw in class, one way to
prove that Lxg = 0 is by arguing in a local coordinate system where X is of the form % (this
is only possible around points p € M where X|, # 0; as we saw in class, this is enough to verify
the formula in the closure of the support of X, while outside the support of X the operator Lx is
identically 0 when acting on vector fields and one forms and, hence, on any tensor field by induction).
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In such a coordinate system, the flow map ®, associated to X is simply the coordinate translation
map (x!,22,... 2") — (x' + ¢, 2%, ..., 2"); therefore, the matrix of the differential D®; takes the
simple form

1 0 ... 0

Coad 01 .0
[Dq)t]j:ax;: .

00 ... 1

The fact that (®;)*(g o ®;) = ¢ is equivalent to the statement that, for any Y, 7 € I'(M) and any
pE M:
g|‘1>t(p) (d@t(Y), dq)t(Z)) = 9|p(Yv Z).

Applying the above relation for Y, Z being coordinate vector fields in the above coordinate chart, we
infer that the components of g satisfy for any ¢ small enough:

gij(x' +t, 2%, a") = gyt 2?, 2"
and, therefore:
agij
ozt (4)

The Lie derivative LxT of any tensor field T" defined on the coordinate chart where X = %
takes the simple form:

0

(LXT)uzk o (LalT)il...ikjlmjl _ %(Tnzk]l]) (5)

J1---J1 o

We have already seen that this formula is true when 7' is a vector field; using the formula Lxw(Y') =
X(w()) —w([X,Y]) for Y = 5%, it can be also verified in the case when T is an 1-form. The

9zk >
case when T is a general (k,[)-tensor can be established inductively using the product rule for Lx.
Alternatively, one can deduce (5) by noting that, in any coordinate system (z',... z"), Eai% =0

and Ly.dr? = 0, and, therefore,

e RITN Q- dle> =0.

The condition (4) now implies the required relation when 7" = g¢:
('CXg)ij = O

In view of the fact that £x commutes with contractions and satisfies the product rule Lx(f®h) =
Lxf®h+ f®Lxh, we can calculate for any XY, Z € I'(M):

X(Q(Ya Z)) = (£X9>(Y7 Z) +g(£XY7 Z) +9(Y7 £XZ)
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In any local coordinate system (z',...,2"), choosing Y = 9; and Z = 9;, the above formula yields

7$n
(noting that [X,Y]" = =9, X" and [X, Z]* = —9; X" in this case):
X 0kgi; = g - [X, 03" - (0)" + gu - (0))" - [ X, 05)
= _gikank - gjkaz’Xk~

Remark. Note that our argument in a local coordinate system where X = -2 in fact yields the

Ozl
following coordinate-independent relation for any covariant tensor (i.e. of type (0,k)):

(@) T p) = Tl
t

(6)

LTl = fn

where (®;)* is the pull-back map associated to Oy, i.e. ()*T(Xy,...,x%) = T(D@t(Xl), . D(IDt(Xk)).
Returning, now, to the case when X is a Killing field of g and choosing T = ¢ in the above formula,
we have

(P1)iglo,(p) = glp forall pe M.

Therefore, formula (6) directly implies that Lxg = 0.

(c) If XY € K, then Lxg = Lyg = 0. Using the commutator formula from part (a) of this
exercise, we calculate

Lixyig=Lx(Lyg) — Ly (Lxg) =0—0=0.

Therefore, is will follow that [X, Y] is also a Killing vector field once we show that, for any vector
field Z, the condition
ﬁzg =0

implies that Z generates a flow @, of isometries. It suffices to prove this fact at points p € supp(Z) =
{q eM: Z|, # 0} (since, by continuity, the statement will be then true also on clos (supp(Z))).

The statement is trivially true on the set M\ clos (supp(Z)> which consists of points ¢ for which

Z =0 on a whole open neighborhood of ¢; at such points, &; = &, = Id, and hence &, is (trivially)
an isometry.

For any p € supp(Z), let us choose a local coordinate system (z!,...,2") such that Z = 8;21. In
this coordinate system, ®;(z!, 2%, ..., 2") = (! +t,2%,...,2"). Therefore,

(((I)t)*9|<1>t(p))ij = gij(‘rl(p) +1, $2<p), S 7$n(p))'

Moreover, Lzg = 0 translates to
algij =0.

Integrating the above equation in the ! direction, we obtain
gij(ifl(]?) +t, 9172(2?), ,a"(p)) = gij(l’l(P), 552(]9)7 o 2"(p)),

i.e. that ((Q)t)*g\(bt(p))ij = (9lp)ij, as required.
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(d) Let (M,g) be a connected Riemannian manifold. Using the statement that, if X*|, =
0; X7, =0 for all 4,5,k = 1,...,n in some local coordinate chart around p and X € K then X = 0,
we deduce (by linearity) that, if Z,, Zo € K satisfy ZF|, = Z&|, and 8,Z7|, = 0,75 then Z, = Z, on
M. This implies that the number of linearly independent Killing vector fields Z on (M, g) can be
at most as many as the components of Z*|, and 9;27|,. However, the components of 9; 77|, are not
independent from each other: Using the formula establised in part (b), i.e. that

9ik0; X" + g;n0; X" + X* 0 gi; = 0,

we infer that the matrix M;; = ¢4#0,X k\p is completely determined once we know X k\p and the
elements M;; of M corresponding to ¢ > j (there are precisely ”(”2_1) such elements M;;). Since the
matrix [g] of ¢ is invertible, this implies that, given X¥|,, the matrix 9;X7|, is restricted to lie in

@. Therefore, since X*|, has n elements, the dimension of the Killing

algebra K cannot exceed n + "(”2_1) = "(”;1).
In the case of Euclidean space (R",gg), the vector fields corresponding to translations in the
direction of the axes and rotations in the coordinate 2-planes, that is to say the vector fields

0 ) .
—, i=1,...,n0; =2'— — 2’ —,
O’ e O’ ox’
constitute a set of w linearly independent Killing vector fields. Since R™ is connected, this is the
maximum possible dimension of the Killing algebra Ky of (R", gg); as a result, {7}, €2;;} constitute a
basis for KCy.

a subspace of dimension

T, =

i>jed{l,....,n}

4.4 Tet X,Y be two smooth vector fields on a 2-dimensional manifold M such that
(X, Y]=0

and let p € M such that X|,,Y|, are not collinear. In this exercise, we will show that there
exists a local system of coordinates (y*,y?) around p so that X = Biyl’ Y = %.
(a) Show that if ¢ is a neighborhood of p and ® : (—§,0) XU — M is the flow map associated
to X, then, for any ¢ € (—0,9) and ¢ € U:
dCI)_t(Y|¢,t(q)) =Y/,

(a) Let v : I — M be an integral curve of the vector field Y such that (0) = p. Consider
the map ¥ : Q C R? — M defined in a neighborhood € of 0 defined by the relation

U(t,s) = u(v(s)).

Show that W is a diffeomorphism on its image when restricted to a small neighborhood of
0. Show also that in the coordinate system associated to the chart ¥—1:

0 0

o Vo

X
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Solution. (a) For any ¢ € U as in the statement of the exercise, let us define for t € (—¢,0) the
tangent vector v, € T,M by
(% = dq),t (Y‘fbt(q))'

We need to show that v, = Y|, for all ¢t € (—4,6). Since vy = Y|,, it suffices to show that, for all
t € (—4,0):

dvt
— =0.
dt
We can readily calculate:
dvy . Utps — Ut
— =11
dt  s—0 S
— Lim dq)ftfs (Y“bt+s(q)) B dq)*t (Y“I’t(q))
s—0 S
i 42 (02 Yo 0) = AP (Vo)
o s—0 S

(dD_Y

Oy (Di(q) — Y|<1>t<q>)
S

- d@,t<hm
s—0
— dq)—t'CXYLI’t(q))

where we used the fact that ®,,,,, = @, o ®;, for any t1,t, € (—0,9) with t; + t5 € (—0,0) and,
therefore, using the formula for the derivative of the composition of two maps: d®, 1+, [p = d®,|s,, ()"
d®;, |, Since we assumed that [X,Y] =0 on M, we deduce that

dvt

=t oo

dt
Therefore, v, = Y|, for all t € (=4, 0).

(b) Let ¥ : Q C R — M be as defined in the statement of the exercise, i.e..

U(t,s) = @u(y(s))

where @, is the flow map of the vector field X and «(s) satisfies v(0) = p, ¥(s) = Y|(s). Note that
U(0,0) = p. In view of the properties of the flow map of a vector field X, we have

OpU(t, s) = 0:P((s)) = Xlay(vs) = Xlwit,s)- (7)
Moreover, since &g = Id, we have ¥U(0,s) = ~(s) and
0.0(0,5) = 0:Po(1(s)) = 3(5) = Y lwio.s). (8)

In order to show that U is a diffeomorphism on its image when restricted to a small neighborhood
of the origin, it suffices to show (in view of the inverse function theorem) that the differential map at
the origin DW|, is invertible. Given any local coordinate system (y', y?) around p, we can calculate
the matrix [DW|o] as follows

_ [90wt(0,0) 8,9'(0,0)] _ [X'], Y|,
Do) = 0,0 0,0)] — | X%, Y?,|°
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where we used (7) and (8). Since X|, and Y|, were assumed to not be collinear, we deduce that
[DW|o] has full rank and is therefore invertible. Thus, there exists an open neighborhood V C Q of
(0,0) such that ¥ :V — ¥(V) is a diffeomorphism.

In the coordinate chart ¥=! on (), the coordinates (z!,2?) are defined as the pull-backs via
the map W' of the Cartesian coordinates on V. This means that if the point ¢ € ¥(V) satisfies
g = V(t,s) = (y(s)), then (z'(g),2%*(q)) = (t,s). The coordinate vector field ;2 at the point
q € U(V) is simply the tangent vector (|, of the coordinate curve () = {2® = 2%(¢)} parametrized
by z!. Since this curve is simply

(W(") = @u1 (v(2*(9))),

we infer that

0
8x1 q
Similarly, 52|, is the tangent vector to the coordinate curve (¥ = {z! = z'(¢)} parametrized by
2 .
2 ie.

= (V(2'(q)) = 0Prur () (7(2%(0))) = X,

(B (2?) = B () (v(7)).
Thus,

0 . .
@ . = C(Q)(xQ(Q)) = aSCI)t:acl(q) (’7(3 = xQ(Q))) = dq)t::vl(q)(/y(s = {L‘2(q)) = d(pt:xl(q)(y|v(x2(q)))'

Since we proved in part (a) that
d@t(Y‘@_t(z)) = Y|z for all z € U,
setting t = 2'(q) and z = ®,1(,)(v(2%(q))) = (2! (q), 2%(q)) = ¢, we infer that

0

aa2l, = Yl

Remark. A faster way to compute the coordinate vector fields is to simply note that, for any local
parametrization ¥ : )V C R® — N™ of a manifold NNV, the coordinate vector fields in the coordinate

chart associated to ¥~! are simply d¥( aii)> where aii are the coordinate vector fields in R”.
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